Population anisotropy in area MT explains a perceptual difference between near and far disparity motion segmentation.

نویسندگان

  • Finnegan J Calabro
  • Lucia M Vaina
چکیده

Segmentation of the visual scene into relevant object components is a fundamental process for successfully interacting with our surroundings. Many visual cues, including motion and binocular disparity, support segmentation, yet the mechanisms using these cues are unclear. We used a psychophysical motion discrimination task in which noise dots were displaced in depth to investigate the role of segmentation through disparity cues in visual motion stimuli (experiment 1). We found a subtle, but significant, bias indicating that near disparity noise disrupted the segmentation of motion more than equidistant far disparity noise. A control experiment showed that the near-far difference could not be attributed to attention (experiment 2). To account for the near-far bias, we constructed a biologically constrained model using recordings from neurons in the middle temporal area (MT) to simulate human observers' performance on experiment 1. Performance of the model of MT neurons showed a near-disparity skew similar to that shown by human observers. To isolate the cause of the skew, we simulated performance of a model containing units derived from properties of MT neurons, using phase-modulated Gabor disparity tuning. Using a skewed-normal population distribution of preferred disparities, the model reproduced the elevated motion discrimination thresholds for near-disparity noise, whereas a skewed-normal population of phases (creating individually asymmetric units) did not lead to any performance skew. Results from the model suggest that the properties of neurons in area MT are computationally sufficient to perform disparity segmentation during motion processing and produce similar disparity biases as those produced by human observers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropy in MT for disparity motion segmentation 1 Population anisotropy in area MT explains a perceptual difference 1 between near and far disparity motion segmentation

22 Segmentation of the visual scene into relevant object components is a 23 fundamental process for successfully interacting with our surroundings. Many visual 24 cues, including motion and binocular disparity, support segmentation, yet the 25 mechanisms utilizing these cues are unclear. We used a psychophysical motion 26 discrimination task in which noise dots were displaced in depth to invest...

متن کامل

Response to motion in extrastriate area MSTl: disparity sensitivity.

Many neurons in the lateral-ventral region of the medial superior temporal area (MSTl) have a clear center surround separation in their receptive fields. Either moving or stationary stimuli in the surround modulates the response to moving stimuli in the center, and this modulation could facilitate the perceptual segmentation of a moving object from its background. Another mechanism that could f...

متن کامل

A functional link between MT neurons and depth perception based on motion parallax.

As an observer translates, objects lying at different distances from the observer have differential image motion on the retina (motion parallax). It is well established psychophysically that humans perceive depth rather precisely from motion parallax and that extraretinal signals may be used to correctly perceive the sign of depth (near vs far) when binocular and pictorial depth cues are absent...

متن کامل

Neurons in dorsal visual area V5/MT signal relative disparity.

Judgments of visual depth rely crucially on the relative binocular disparity between two visual features. While areas of ventral visual cortex contain neurons that signal the relative disparity between spatially adjacent visual features, the same tests in dorsal visual areas yield little evidence for relative disparity selectivity. We investigated the sensitivity of neurons in dorsal visual are...

متن کامل

Macaque V2 neurons, but not V1 neurons, show choice-related activity.

In the macaque extrastriate cortex, robust correlations between perceptual choice and neuronal response have been demonstrated, frequently quantified as choice probabilities (CPs). Such correlations are modest in early visual cortex, suggesting that CPs may depend on the position of a neuron in the hierarchy of visual processing. However, previous studies have not compared neurons with similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 105 1  شماره 

صفحات  -

تاریخ انتشار 2011